

Coordination Chemistry Reviews 212 (2001) 167–168

COORDINATION CHEMISTRY REVIEWS, VOL. 212 (2001)

SUBJECT INDEX

Amide

The role of donor group orientation as a factor in metal ion recognition by ligands 61

Amine

The role of donor group orientation as a factor in metal ion recognition by ligands 61

Anti-cancer complexes

Molecular mechanics modelling of Pt/nucleotide and Pt/DNA interactions 35

Cambridge Structural Database

Molecular mechanics, data and conformational analysis of first-row transition metal complexes in the Cambridge Structural Database 133

Cisplatin

Molecular mechanics modelling of Pt/nucleotide and Pt/DNA interactions 35

Complementarity

The role of donor group orientation as a factor in metal ion recognition by ligands 61

Coordination chemistry

Deriving force field parameters for coordination complexes 79

Coordination scan

Applications of molecular mechanics to metal-based imaging agents 111

Drug design

Molecular mechanics modelling of Pt/nucleotide and Pt/DNA interactions 35

Electronic effects

The ligand field molecular mechanics model and the stereoelectronic effects of d and s

Ether

The role of donor group orientation as a

factor in metal ion recognition by ligands 61

Force field

Molecular mechanics: theoretical basis, rules, scope and limits 3

Force fields

Deriving force field parameters for coordination complexes 79

Gadolinium

Applications of molecular mechanics to metal-based imaging agents 111

Gallium

Applications of molecular mechanics to metal-based imaging agents 111

Indium

Applications of molecular mechanics to metal-based imaging agents 111

Ligand design

The role of donor group orientation as a factor in metal ion recognition by ligands 61

Metal complexes

Molecular mechanics, data and conformational analysis of first-row transition metal complexes in the Cambridge Structural Database 133

Metal ions

The role of donor group orientation as a factor in metal ion recognition by ligands 61

Molecular mechanics

Deriving force field parameters for coordination complexes 79

Molecular mechanics, data and conformational analysis of first-row transition metal complexes in the Cambridge Structural Database 133

PII: S0010-8545(00)00417-3

Molecular mechanics modelling of Pt/nucleotide and Pt/DNA interactions 35

Molecular mechanics: theoretical basis, rules, scope and limits 3

The role of donor group orientation as a factor in metal ion recognition by ligands 61

Molecular modeling

Molecular mechanics: theoretical basis, rules, scope and limits 3

Molecular modelling

The ligand field molecular mechanics model and the stereoelectronic effects of d and s electrons 11

Parameterization

Deriving force field parameters for coordination complexes 79

Preorganisation

The role of donor group orientation as a factor in metal ion recognition by ligands 61

Strain energy

Molecular mechanics: theoretical basis, rules, scope and limits 3

Structure

Molecular mechanics: theoretical basis, rules, scope and limits 3

SYBYL parameters

Applications of molecular mechanics to metalbased imaging agents 111

Technetium

Applications of molecular mechanics to metalbased imaging agents 111

Transition metal complexes

The ligand field molecular mechanics model and the stereoelectronic effects of d and s electrons 11

Transition metals

Deriving force field parameters for coordination complexes 79